Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
نویسندگان
چکیده
A geometric graph is angle-monotone if every pair of vertices has a path between them that—after some rotation—is xand ymonotone. Angle-monotone graphs are √ 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced anglemonotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone—specifically, we prove that the half-θ6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex s to any vertex t whose length is within 1 + √ 2 times the Euclidean distance from s to t. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.
منابع مشابه
Angle-Monotone Graphs: Construction and Local Routing
A geometric graph in the plane is angle-monotone of width γ if every pair of vertices is connected by an angle-monotone path of width γ, a path such that the angles of any two edges in the path differ by at most γ. Angle-monotone graphs have good spanning properties. We prove that every point set in the plane admits an angle-monotone graph of width 90◦, hence with spanning ratio √ 2, and a subq...
متن کاملLocal Routing in Convex Subdivisions
In various wireless networking settings, node locations determine a network’s topology, allowing the network to be modelled by a geometric graph drawn in the plane. Without any additional information, local geometric routing algorithms can guarantee delivery to the target node only in restricted classes of geometric graphs, such as triangulations. In order to guarantee delivery on more general ...
متن کاملTraffic Analysis in Random Delaunay Tessellations and Other Graphs
In this work we study the degree distribution, the maximum vertex and edge flow in non-uniform random Delaunay triangulations when geodesic routing is used. We also investigate the vertex and edge flow in Erdös-Renyi random graphs, geometric random graphs, expanders and random k–regular graphs. Moreover we show that adding a random matching to the original graph can considerably reduced the max...
متن کاملStabbing Line Segments with Disks: Complexity and Approximation Algorithms
Computational complexity is studied for the problem of stabbing set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line drawing of planar graph. This problem along with its relatives [3] arise in physical network security analysis for telecommunication, wireless and road networks represented by geometric graphs ...
متن کاملAngle-monotone Paths in Non-obtuse Triangulations
We reprove a result of Dehkordi, Frati, and Gudmundsson: every two vertices in a non-obtuse triangulation of a point set are connected by an angle-monotone path— an xy-monotone path in an appropriately rotated coordinate system. We show that this result cannot be extended to angle-monotone spanning trees, but can be extended to boundary-rooted spanning forests. The latter leads to a conjectural...
متن کامل